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1. Introduction

The dynamics of chiral symmetry breaking and confinement still deserves a better under-

standing. They are responsible of the physics of low energy composite particles, such as

mesons and baryons, but quantum chromo-dynamics (QCD), the theory of strong interac-

tions, has proven difficult to study analytically for being strongly coupled at the scale of

the typical hadron mass (∼ 1 GeV.)

Within string theory, a strongly coupled field theory is dual to a weakly coupled gravity

model, [1 – 3]. This opens a possibility to infer physics of strongly coupled field theories

from the semi-classical dynamics in their dual weakly coupled picture.

Recently [4 – 13] this idea has been thoroughly investigated using brane configurations.

These constructions have been used as tools to study low energy dynamics and often to

compare with results of QCD-like models. Chiral symmetry breaking and confinement are

well described therein and the spectrum resembles the bound state spectrum found in low

energy QCD.

In the present work, we discuss chiral symmetry breaking in two dimensional field

theories and the dynamics that leads to the disappearance of the Nambu-Goldstone boson

in the dual gravity picture. Let us consider the model proposed in [14]. The configuration

consists of Nc D4-branes intersecting with Nf D6- and D6-branes, see figure 1. The

intersection is chosen to be two dimensional. At low energy, this brane configuration
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Figure 1: Configuration of Nc D4-branes and Nf D6- and D6-branes.

reduces to a two dimensional field theory of chiral fermions interacting with a bulk U(Nc)

gauge field. The fermion fields are in the fundamental representation of the chiral group

U(Nf )×U(Nf ). After integrating the gauge field out, an effective four-fermion interaction

is generated. The low energy theory is therefore equivalent to the (generalized) Gross-

Neveu (GN) model [15].

In the GN model, chiral symmetry is dynamically broken for any values of the pa-

rameters. From general grounds, the Nambu-Goldstone (NG) boson associated with chiral

symmetry breaking is described by the massless Kaluza-Klein (KK) mode of the gauge

field propagating on the D6-brane worldvolume. Its absence is required by Coleman’s the-

orem [16]. In [14], a mechanism is suggested to remove the zero-mode from the low energy

spectrum.

The proposal is related to the dynamics described in [17] to solve a paradox, that seems

to appear in brane configurations with two dimensional intersection. It seems näıvely that

the physics of the weakly coupled theory and its strongly coupled dual are very different.

The former suggests the theory to be invariant under eight supercharges and consisting of

chiral fermions localized on the intersection. On the other hand, the dual strongly coupled

description leads to a rather different picture, where the theory is invariant under three

dimensional Poincaré group, supersymmetry is enhanced to sixteen supercharges and a

mass gap is present in the spectrum. The paradox is solved by the non-trivial dynamics

induced by anomaly inflow: the non-zero chiral anomaly on the two dimensional intersection

is cancelled by the anomalous gauge transformation of the bulk action. As it should become

clear later, the anomaly inflow changes the dynamics of the gauge field to the extent of

delocalizing it away from the intersection. In the proximity of the intersection no modes are

present and the physics is described by a Chern-Simon gauge theory on three dimensional

space-time.

We will show that in the dual GN model the delocalization of the gauge field explains

the absence of the NG boson in the low energy spectrum. The dynamics can be referred

to as the dual picture of the Coleman’s theorem.

For simplicity, we will address the discussion of the dynamics described before in
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solvable T -dual models with abelian groups. Because the results we will present depend on

the dynamics localized on the intersection, we conjecture them to hold for the non-abelian

case as well.

The brane configurations consist of orthogonal D-branes intersecting on a two dimen-

sional worldsheet. Specifically, we consider one D2-brane intersecting D8-branes, and one

D3-brane intersecting D7-branes. Chiral fermions are localized on the intersection and

coupled to the gauge fields propagating on the brane worldvolumes. One of the two gauge

fields is decoupled from the low energy spectrum, so only one is dynamical. The low en-

ergy physics can be described by chiral fermions localized on a string. The fermions are

interacting with an abelian gauge field propagating in the bulk.

Since the fermions have a definite chirality, their coupling with the gauge field is

anomalous. Consistency of the model requires the anomaly to be cancelled. For chiral

fermions localized on two dimensional topological defects, the dynamics of the gauge field

in the bulk yields to the anomaly cancellation. Quantum corrections induce a topological

Chern-Simon term for the gauge field in the bulk. The gauge variation of this term cancels

exactly the chiral anomaly. This mechanism is known as anomaly inflow, see [18] and [19].

We will solve the equation of motion for the gauge field. The effect of the effective

Chern-Simon term is to create a repulsive potential for the equivalent Schrödinger problem.

The result is that the KK zero-mode of the gauge field has no support on the intersection

and is therefore absent from the low energy spectrum of the two dimensional theory.

We argue that, in the dual GN model, the delocalization of the gauge field removes

the NG boson from the low energy spectrum. As suggested in [14], the reason is that the

zero-mode of the gauge field describes the NG boson in the low energy theory. Its vanishing

wavefunction at the intersection thus implies the absence of the NG boson from the two

dimensional theory, where chiral symmetry is dynamically broken.

More specifically, we firstly consider the model containing a D2-brane intersecting D8-

branes. On the two dimensional intersection, chiral fermions are localized and naturally

coupled to the gauge field propagating on the D2-brane. The presence of chiral fermions

yields to a non-zero anomaly. Fermion one-loop correction generates an effective Chern-

Simon term for the gauge field. Its gauge variation is localized on the intersection and

opposite to the chiral anomaly. Thus taking into account both effects, the action is gauge

invariant. This topological term, essential for the consistency of the theory, changes the

dynamics of the gauge field and - as we will see - forces the field to delocalize in the bulk.

Therefore the zero-mode of the fluctuations of the field is absent in the two dimensional

theory.

We then consider a D3-brane intersecting D7-branes. As before, the spectrum consists

of chiral fermions and gauge fields. The intersection is magnetically charged under the

Ramond-Ramond (RR) scalar of type IIB superstring theory. The RR field and the gauge

field are coupled, and by integrating out the scalar - its flux fixed by the charge on the

intersection - an effective Chern-Simon term appears for the gauge field. This term cancels

the chiral anomaly and, as it will be discussed, it delocalizes the gauge field in the bulk,

effectively removing the zero-mode from the low energy spectrum.

Despite some differences in the two models, the basic dynamics of the gauge field is the
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same: an effective topological term is generated in the bulk and forces the gauge field away

from the intersection. In the case of the dual Gross-Neveu model, the effect is to remove

the NG boson associated with the chiral symmetry breaking. The NG boson is described

by the zero-mode of the fluctuations of the gauge field on the D6-brane worldvolume.

The dynamics induced by the effective Chern-Simon term suppresses the zero-mode on the

intersection and so it is absent in the two dimensional spectrum. The dynamics briefly

portrayed can be thought as the dual picture of the Coleman’s theorem valid for two

dimensional field theories.

For sake of completeness, we will give a more detailed review of the dual Gross-Neveu

model [14], which is the main motivation for the present work.

Let us consider two dimensional theory of chiral fermions, non-abelian U(Nc) gauge

field and a global U(Nf )× U(Nf ) chiral symmetry. The dual brane configuration consists

of two parallel stacks of Nf D6- and Nf D6-brane fixed in their orthogonal direction at a

distance L. They both intersect Nc coincident D4-brane on a two dimensional worldsheet.

The configuration is shown in figure 1.

We can consider the ’t Hooft limit Nc → ∞, gs → 0 and gsNc and Nf held fixed.

In this limit the coupling of the strings stretching between the D6-branes1 goes to zero

and their excitations become non-dynamical. The fermions in the adjont representation of

U(Nc) on the D4-brane worldvolume are decoupled from the low energy spectrum as they

acquire mass via Scherk-Schwarz mechanism.

The spectrum (ignoring scalar fields) is composed of modes localized on the intersection

and modes propagating in the bulk, that is on the D4-branes. The former are massless

excitations of open strings stretching between D4- and D6-branes and are chiral fermions

in the fundamental representation of both the chiral and the gauge group. One of the

chirality is removed by the GSO projection and, since the GSO projection acting on 4− 6̄

strings is opposite to that on 4−6 strings, the chirality is different for different intersections.

Thus, the spectrum contains both left and right chiral fermions; being localized on different

intersections, they interact only through the exchange of the bulk U(Nc) gauge field, which

arises from the strings ending on the D4-branes. At low energy, we can integrate the gauge

field out yielding an effective non-local four-fermion interaction. The two dimensional

effective theory is therefore equivalent to the (generalized) Gross-Neveu (GN) model [15].

Chiral symmetry breaking has been discussed for the dual GN model in [14]. It is

described therein as the dynamics of Nf D6-branes on the background generated by Nc

D4-branes, when Nc is much larger than Nf . The equation of motion for the D6-branes

has two different solutions.

In the first solution, D6- and D6-branes are distinct and separated by a distance L in

the transverse direction. This solution preserves the chiral symmetry U(Nf ) × U(Nf ). In

the second solution, D6- and D6-branes join together through a wormhole (see figure 2.)

The fact that D6- and D6-brane are a single connected brane implies that the chiral

symmetry group is broken down to the diagonal U(Nf ).

In the case of zero temperature the wormhole configuration has lower energy than

1If not noted otherwise, we will not distinguish between D6-brane and D6-brane.
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Figure 2: The D6- and D6-brane are connected through a wormhole.

the other, thus suggesting that the chiral symmetry is spontaneously broken for any value

of the parameters, as found in [15]. Above a critical temperature chiral symmetry is

restored, as the system undergoes a geometrical transition from the configuration with

the wormhole to the one with two distinct sets of D6-branes. Analogously, in [20] a

confinement-deconfinement phase transition is discussed.

The paper is organized as follows. In section 2 we consider the D2- and D8-brane

configuration, and in section 3 the one with D3- and D7-branes. We then briefly discuss

some aspects of the dynamics for more general models in section 4 and conclude in section 5.

In the appendices A and B we summarize the known facts about the bosonization rules in

the Schwinger model for Dirac fermions and chiral fermions respectively. The appendix C

explains certain technical aspects we encounter in section 3.

2. Localized chiral fermion in R
2,1

As briefly presented in the introduction, the model we would like to discuss is the low

energy effective theory of the brane configuration, composed of one D2-brane orthogonal

to D8-branes. The intersection is chosen to be two dimensional and it is topologically

equivalent to a (long) string.

The low energy spectrum of the model is found by looking at the massless excitations of

the open strings stretching between the branes. They can be distinguished in 8− 8 strings

ending on the D8-brane, 2− 2 strings ending on the D2-brane, and 2− 8 strings stretching

between D2-brane and D8-brane.
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We consider the simplified case where excitations of 8 − 8 strings are decoupled from the

low energy physics. The low energy excitations of 2− 2 strings are, while neglecting scalar

modes, a gauge field AM and a fermion transforming in the adjoint representation of the

gauge group. The fermion is massive and decoupled from the low energy spectrum by

non-supersymmetrically compactifying a direction along the D2-brane.

The open string stretching between the D2- and D8-brane gives massless fermions ψL

localized on the intersection. One of the chirality is removed by the GSO projection,

therefore the fermion is chiral. The corresponding low-energy effective Lagrangian is

L = −
1

4g2
F 2

MN + δ(u) ψ̄L(i/∂ + /A)ψL , (2.1)

the chiral fermion is naturally coupled to the gauge field.

On top of this classical Lagrangian, we have to consider the term that is induced by

radiative corrections; due to a fermion one-loop diagram, the following current

〈JM 〉 ∼ εMNP θ(u)FNP (2.2)

is generated in the bulk. Including this effect, the effective Lagrangian reads

L = −
1

4g2
F 2

MN −
1

2
θ(u)εMNP AMFNP + δ(u) ψ̄L(i/∂ + /A)ψL . (2.3)

In two dimensions a well-known fact is the dual relation between fermions and boson. Using

the bosonization rules discussed in the appendices B for chiral fermions coupled to a gauge

field, the dual Lagrangian

L = −
1

4g2
F 2

MN −
1

2
θ(u)εMNP AMFNP +

+ δ(u)

[

1

2
(∂µ φ)2 + Aµ(ηµν − εµν)∂µφ +

1

2
A2

µ

]

. (2.4)

The presence of chiral fermions leads to a non-zero anomaly. The fermion ψL is propor-

tional to exp[iφ], thus the gauge transformation δψL = exp[−iΛ] translates into a shift for

the dual boson δφ = −Λ. Under this transformation, the term localized on the intersection

is not invariant:

δ

[

1

2
(∂µ φ)2 + Aµ(ηµν − εµν)∂µφ +

1

2
A2

µ

]

δ(u) = Λ (εµν∂µAν) δ(u) . (2.5)

Under gauge transformation, the vector field AM transform as δAM = ∂MΛ. Because of the

Chern-Simon term, the action is not gauge invariant. In fact its variation is proportional

to a term localized on the intersection. This localized term - as it can be seen directly - is

equal and opposite to the anomaly (2.5):

δ

[

−
1

4g2
F 2

MN −
1

2
θ(u)εMNP AMFNP

]

= −Λ (εµν∂µAν) δ(u) . (2.6)

Hence the action is gauge invariant as a whole.
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Both the bulk and the localized action are not gauge invariant, the former because

of a boundary term, the latter because of gauge anomaly. The two gauge variations are

opposite of one another, therefore the anomaly is cancelled by the dynamics in the bulk.

This mechanism, known as anomaly inflow, was discovered in [18] for topological defects

in field theory and subsequently generalized for the case of intersecting branes in [19].

2.1 Stückelberg mechanism and anomaly inflow

We can choose a combination of the gauge and scalar fields, BM = AM − ∂Mφ, such to

diagonalize the lagrangian. The localized term reads in the new fields

1

2
B2

µ − εµν∂µφBν . (2.7)

The last term on the right hand side of (2.7) is related to the chiral anomaly, this can be

seen by integrating by parts and expressing the term as φ εµν∂µBν , see (2.5). This is to be

cancelled by the inflow current from the bulk Chern-Simon term.

The bulk Lagrangian becomes in term of BM

−
1

4g2
F 2

MN −
1

2
θ(u)εMNP BMFNP − θ(u)εMNP ∂Mφ∂NBP . (2.8)

The last term is a total derivative as it can be seen by integrating by parts:

−θ(u)εMNP ∂Mφ∂NBP → −εMNP ∂M [θ(u)φ∂NBP ] → −δ(u)εµνφ∂µBν . (2.9)

In the last step the Stokes’ theorem has been applied. One has to take care of the presence

of the step function which ultimately leads to the localized term, roughly because ∂u θ(u) =

δ(u).2. The localized term cancels the anomaly as noted before.

The action3 reads

S =

∫

d3x

[

−
1

4g2
F 2

MN −
1

2
θ(u)εMNP BMFNP + δ(u)

1

2
B2

µ

]

. (2.10)

In the bulk the model is described by a U(1) Chern-Simon gauge theory. The topological

term, as it is known [21], will generate a mass gap in the bulk. The interaction of chiral

fermions and gauge field induces an effective localized mass term, whose gauge variation is

cancelled by the variation of the Chern-Simon term.

2.2 A delocalized gauge field

In the present section we solve the equation of motion for FMN . It is easier to use

lightcone coordinates defined as x± ≡ x0 ± x1 on the string worldsheet, and u the co-

ordinate transverse to the string. The Lagrangian is rewritten, using η+− = ηuu = 1,

2the step function is defined as +1/2 for u > 0 and -1/2 for u < 0.
3A note should be added on the dimension of the fields: in a 1+1 worldvolume a boson field has zero

canonical dimension and a fermion 1/2; in 2+1 a boson 1/2, a fermion 1. Being the vector field propagating

in the bulk we are implicitly assuming it to have dimension 1/2 and therefore the charge of the fermion

localized on the string has dimension 1/2 as well; by substituting Aµ with Bµ we are neglecting this charge,

and implicitly redefining Bµ = eAµ − ∂µφ (dimension 1) and g2
7→ g2e2 (dimension 1.)
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η++ = η−− = ηu± = 0, as (we replace BM with AM )

L =
1

2g2
F 2

+− −
1

g2
Fu+Fu− −

1

2
θ(u)(A+F−u + A−Fu+ + AuF+−) + δ(u)A+A− . (2.11)

Taking variation of the previous Lagrangian with respect to A+, A− and Au, the equations

of motion are respectively

θ(u)Fu− +
1

g2
(∂−F+− + ∂uFu−) + δ(u)

3

2
A− = 0 , (2.12)

−θ(u)Fu+ +
1

g2
(∂+F−+ + ∂uFu+) + δ(u)

1

2
A+ = 0 , (2.13)

θ(u)F+− +
1

g2
(∂+Fu− + ∂−Fu+) = 0 . (2.14)

After algebraic manipulation4 we can write a differential equation for the (+−)-component

of FMN alone.

The technique we are using is somewhat non-standard since we solve for FMN instead of

solving for the vector potential AM ; here we should keep in mind that the vector field A

must be continuous across the boundary but not its derivative along u, so some components

of the field strength FMN would not be continuous and their discontinuity is determined

by the boundary conditions.

The equation to solve for F+− is:

∂ 2
u F+− + 2∂+∂−F+− − g4F+− = 0 . (2.15)

We are interested in the Kaluza-Klein spectrum for the gauge field on the string world-

sheet. Using the ansatz 2∂+∂−F+− = µ2F+− for massive gauge field in two dimension, the

equation for F+− becomes

∂ 2
u F+− −

1

4
ĝ4F+− = 0 with ĝ4 ≡ g4 − 4µ2. (2.16)

Localized Modes: 0 ≤ µ2 < g4/4. We turn our attention to localized massive modes.

In order for Aµ to be localized its mass has to be less than g4/4. This can be easily

understood physically: in the bulk the presence of the Chern-Simon term generates a mass

gap between the vector field modes localized on the string and the ones in the bulk, so,

when their energy is high enough, they are free to propagate in the bulk, otherwise they

are constrained on the intersection.

The generic solution for F+− is

F+− = f(x±) exp [−
ĝ2

2
|u|] , (2.17)

where we have imposed continuity condition on F+−, since its definition does not contain

any derivative of the field in respect to u, and normalizability along the transverse direction.

The function f(x±) is the solution for 2∂+∂−f = µ2f :

f(x±) = a sin[k · x] + b cos[k · x] , (2.18)

4Add and subtract the differential of (2.12) with (2.13) with respect to x± and use (2.14).
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where k+k− = −µ2/2 and k ·x = k+x++k−x− = k+x−+k−x+. We solve (2.12) and (2.13)

using F+− given above, and find the general solution in the bulk to be:

F+− = f(x±) exp [−
ĝ

2

2

|u|] , (2.19)

Fu+ = −θ(u)
4∂+f

ĝ2 + g2
exp [−

ĝ

2

2

|u|] , (2.20)

Fu− = θ(u)
4∂−f

ĝ2 − g2
exp [−

ĝ

2
|u|] . (2.21)

We can check that (2.14) is trivially satisfied by the solution, given 2∂+∂−f = µ2f .

One more constraint must be imposed on the solution, namely the boundary condition

arising from the presence of localized fermions on the string, or alternatively the localized

mass for Aµ. The boundary conditions we have to impose are continuity of the vector

field AM across the border, but not of its derivative along the transverse direction u. The

variation of Fu± is determined by integrating the equations of motion across the string:

[∂+Fu−] − [∂−Fu+] = −g2F+− , (2.22)

[∂+Fu−] + [∂−Fu+] = −
1

2
g2F+− , (2.23)

where [Fu±] ≡ limu→0+ Fu± − limu→0− Fu±. Using the general solution found above, we

have the following equations to satisfy for the coefficient function f(x±)

ĝ2f = g2f , (2.24)

g2f =
1

2
g2f . (2.25)

Only the trivial solution satisfies this set of equations and therefore no localized modes

are present in the spectrum. The Chern-Simon term, as we have seen, generates a mass

gap between the brane and the bulk and one may have hoped to be able to localize the

gauge field on the string. This is indeed not the case, the reason is understood by looking

closely at (2.12) and (2.13) and noticing that the effective potential generated by the chiral

fermions, Veff ∼ +δ(u)A±, in the equivalent Schrödinger equation is always repulsive and

therefore it can not support a localized solution.

We may need to emphasize that this result is valid for massive modes as well as for the

zero-mode mode, so no massless mode is present in the spectrum.

Continuous Modes: µ2 ≥ g4/4. We now consider the continuous modes with masses

greater than g4/4. The generic solution, k2 is defined as k4 = 4µ2 − g4, is for u > 0

F+− = f1 cos
k2u

2
+ f

(+)
2 sin

k2u

2
, (2.26)

Fu+ =
−g2∂+f1 − k2∂+f

(+)
2

2µ2
cos

k2u

2
+

k2∂+f1 − g2∂+f
(+)
2

2µ2
sin

k2u

2
, (2.27)

Fu− =
−g2∂−f1 + k2∂−f

(+)
2

2µ2
cos

k2u

2
−

k2∂−f1 + g2∂−f
(+)
2

2µ2
sin

k2u

2
, (2.28)
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and for u < 0

F+− = f1 cos
k2u

2
+ f

(−)
2 sin

k2u

2
, (2.29)

Fu+ =
g2∂+f1 − k2∂+f

(−)
2

2µ2
cos

k2u

2
+

k2∂+f1 + g2∂+f
(−)
2

2µ2
sin

k2u

2
, (2.30)

Fu− =
g2∂−f1 + k2∂−f

(−)
2

2µ2
cos

k2u

2
−

k2∂−f1 − g2∂−f
(−)
2

2µ2
sin

k2u

2
. (2.31)

The coefficients fi are solutions for 2∂+∂−fi = µ2fi and they will be fixed by the bound-

ary conditions. By using the previous explicit solution, the variations of Fu± across the

boundary are found to be:

[∂+Fu−] − [∂−Fu+] =
1

2
k2(f

(+)
2 − f

(−)
2 ) , (2.32)

[∂+Fu−] + [∂−Fu+] = −g2f1 . (2.33)

The boundary conditions after substituting them into (2.22) and (2.23) are

1

2
k2(f

(+)
2 − f

(−)
2 ) = −g2f1 , (2.34)

g2f1 =
1

2
g2f1 . (2.35)

The only acceptable solution for f1 is the trivial one. With f1 = 0 we find that the

coefficients f
(±)
2 are equal. The generic solution for FMN with µ2 ≥ g4/4 is shown below

F+− = f(x±) sin
k2u

2
, (2.36)

Fu+ = −
∂+f

2µ2

[

k2 cos
k2u

2
+ 2θ(u)g2 sin

k2u

2

]

, (2.37)

Fu− =
∂−f

2µ2

[

k2 cos
k2u

2
− 2θ(u)g2 sin

k2u

2

]

. (2.38)

We notice that while F+− is continuous, Fu± shifts of a phase equal to 2 arctan[k2/g2] + π,

as it crosses the string. What may surprise is that no field is present on the worldsheet since

F+− is identically zero for u → 0. Thus, on the string, only a transverse electromagnetic

field is present. An argument for understanding this effect comes from an analogy with

superconductors as ultimately the string is in a superconducting (or Higgs) phase [22]:

the Meissner effect is the well-known phenomenon for which a superconductor expels the

electromagnetic field from its interior. Here the superconducting string does not allow the

field F+− to be non-zero on its worldsheet, namely the field strength is perfectly repelled

by the superconductor. The gauge field delocalizes in the bulk and a mass gap ∼ g4 is

generated.

Solution with F+− = 0. We are now looking for a particular kind of solution found

in [17]. Those are solutions for which we assume F+− to be identically zero everywhere,
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both on the string and in the bulk. The equations of motion are greatly simplified

∂2
u A− + g2θ(u)∂u A− + δ(u)

3

2
A− = 0 , (2.39)

∂2
u A+ − g2θ(u)∂u A+ + δ(u)

1

2
A+ = 0 , (2.40)

∂u(∂+A− + ∂−A+) = 0 , (2.41)

where we have chosen the gauge Au = 0. This choice does not fix the gauge completely.

Indeed a gauge transformation with parameter depending only on x± preserves it. One may

also want to fix this residual gauge freedom, but it is unessential in the present discussion.

The third equation, along with F+− = 0, imposes the vector fields A± to be holomorphic

in x± respectively. The solution for A− is

A− = 4θ(u)
f(x−)

g2
exp

[

−
1

2
g2|u|

]

, (2.42)

while we have set A+ identically to zero because it is not normalizable being proportional

to exp[g2|u|/2]. The boundary conditions constraint also A− to be identically zero, because

only the trivial solution for f(x−) allows the field to be continuous at u = 0.

The particular solution found in the aforementioned work is not present in the dynamics

of the low energy theory of the configuration D2- D8-brane.

3. Localized chiral fermion in R
3,1

We now generalize the previous setup to a model with a four dimensional bulk and chiral

fermion localized on a two dimensional topological defect. The model is composed of a

U(1) gauge field AM and a scalar field C(0) propagating in the bulk, and chiral fermions

localized on the defect, topologically a string,

S =

∫

d4x

[

−
1

4g2
F 2

AB −
1

2
εABCD∂AC(0)ABFCD +

1

2
(∂MC(0))2 +

+JABHAB + δ(2) (~u)ψ̄L(i/∂ + /A)ψL

]

. (3.1)

The fermion is naturally coupled to the gauge field; the tensor JAB is the string current

defined as JAB =
∫

d2ξδ(x − Y (ξ))∂ aYA∂ bYB εab, and HAB is the magnetic dual of the

scalar C(0), dH = ?dC(0) where ? is the Hodge star product in R
3,1. This model can be

seen as the effective action for the following brane configuration in type IIB string theory:

one D3-brane intersecting D7-branes on a 1+1 worldsheet, i.e. the string. The fields we

are considering are the massless open string modes of such configuration. Some dimensions

on the worldvolume of the D-branes are non supersymmetrically compactified and so the

adjont fermions, that should appear in the massless spectrum, are decoupled from the low

energy theory. For sake of simplicity we are neglecting the modes coming from the D7-

branes.

The scalar field C(0) is understood as the RR field in the IIB spectrum, and its interaction

with the gauge field is part of the Chern-Simon term, formally written as C∧exp[F ], where
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C ≡
∑

C(i) and C(i) are the Ramond-Ramond fields.

The string is magnetically coupled to the C(0) form.

We consider cylindrically symmetric configurations and so the effective action after inte-

grating around the string is

L = u

[

−
1

4g2
F 2

MN

]

−
1

2
εMNP AMFNP + δ(u)

1

2
A2

µ , (3.2)

the integral of C(0) is fixed by the string magnetic charge. We have implicitly integrated

out the fermion field as well. On lightcone coordinates the Lagrangian is

L = u

[

1

2g2
F 2

+− −
1

g2
Fu−Fu+

]

−
1

2
(A+F−u + A−Fu+ + AuF+−) + δ(u)A+A− , (3.3)

and by differentiating with respect to the gauge field, the equations of motion are

Fu− +
1

g2
(u∂−F+− + ∂uuFu−) + δ(u)A− = 0 , (3.4)

−Fu+ +
1

g2
(u∂+F−+ + ∂uuFu+) + δ(u)A+ = 0 , (3.5)

F+− +
u

g2
(∂+Fu− + ∂−Fu+) = 0 . (3.6)

Once again, a differential equation for F+− can be recovered after algebraic manipulations.

The Kaluza Klein condition is 2∂+∂−F+− = µ2F+−, and so the equation is

−u∂u u∂u F+− + (g4 − µ2u2)F+− +
u

g2
∂u(u δ(u)∂µAµ) − δ(u)uF+− = 0 . (3.7)

We have retained the localized term to show that the third term in the above expression

can be removed by a suitable gauge choice and is therefore a gauge artifact. Equation (3.7)

is scale invariant in the u direction, hence we can substitute u with the adimensional

coordinate û = µu, and the only parametrical dependency is on the adimensional coupling

constant g:

−û ∂û û ∂ûF+− + (g4 − û2)F+− − δ(û) ûF+− = 0 . (3.8)

In order to solve the equation and impose the boundary conditions, we regularize the δ

function as θ(ε− û)/ε, and we take the zero ε limit to recover the thin wall approximation

we are considering. The equations for F+− in the two regions are:

−û2 F ′′
+− − ûF ′

+− + (g4 − û2)F+− = 0 û > ε , (3.9)

−û2 F ′′
+− − ûF ′

+− + (g4 +
û

ε
− û2)F+− = 0 û < ε , (3.10)

which can both be solved analytically. The solution for the first equation is a sum of

Bessel functions of the first and second kind, while for the second it is a sum of confluent

hypergeometric functions, as shown explicitly below

F+− = f (1)Jg2(û) + f (2)Yg2(û) , (3.11)

F+− = ûg2

e−iû

[

h(1)M(
i

2ε
+

1 + 2g2

2
, 1 + 2g2, 2iû)+

+h(2)U(
i

2ε
+

1 + 2g2

2
, 1 + 2g2, 2iû)

]

. (3.12)
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To avoid clutter, we shorten the two confluent hypergeometric functions with M̄(û) and

Ū(û). By imposing regularity of the solution at the origin, given the string has a finite

thickness, we choose the coefficient h(2) to be zero because the hypergeometric function U

diverges for zero argument.

The boundary conditions we have to impose are continuity and differentiability of the

solution at û = ε, the former gives

f (1)Jg2(ε) + f (2)Yg2(ε) = εg2

e−iεh(1)M̄ (ε) , (3.13)

and the latter

f (1)J ′
g2(ε) + f (2)Y ′

g2(ε) = εg2

e−iεh(1)

[(

g2

ε
− i

)

M̄(ε) + M̄ ′(ε)

]

. (3.14)

Solving for h(1) in (3.13) and substituting in (3.14), we find the following relation between

the coefficients f (1) and f (2):

f (2)

f (1)
= −

Jg2 −
(

g2

ε − i + M̄ ′(ε)
M̄(ε)

)

J ′
g2(ε)

Yg2 −
(

g2

ε − i + M̄ ′(ε)
M̄(ε)

)

Y ′
g2(ε)

. (3.15)

One more constraint must be imposed, as usual we have to fix the normalization of the

vector field to be one. At large values of û the Bessel functions can be approximated with

decreasing plane waves

Jg2(û) ∼

√

2

πû
cos

[

û − g2 π

2

]

, Yg2(û) ∼

√

2

πû
sin

[

û − g2 π

2

]

. (3.16)

Therefore the normalization condition for f (i) is (f (1))2 + (f (2))2 = 1. The solutions of

these two constraints, boundary conditions and normalization, are5

f (1) =
Yg2(ε) − ε(g2 − 1

1+2g2 )−1Y ′
g2(ε)

√

(Jg2(ε) − ε 1+2g2

2g4+g2−1
J ′

g2(ε))2 + (Yg2(ε) − ε 1+2g2

2g4+g2−1
Y ′

g2(ε))2
, (3.17)

f (2) = −
Jg2(ε) − ε(g2 − 1

1+2g2 )−1J ′
g2(ε)

√

(Jg2(ε) − ε 1+2g2

2g4+g2−1J ′
g2(ε))2 + (Yg2(ε) − ε 1+2g2

2g4+g2−1Y ′
g2(ε))2

. (3.18)

In the limit ε → 0

f (1) ∼ 1 , (3.19)

f (2) ∼
2π

Γ[g2]Γ[1 + g2]

4g2 − 3

4g4 + 4g2 − 1

(ε

2

)2g2

→ 0 . (3.20)

The solution for the stress tensor field is

F+− = f(x±)Jg2(µu) , (3.21)

Fu+ = −
∂+f

µ
Jg2−1(µu) , (3.22)

Fu− = −
∂−f

µ
Jg2+1(µu) . (3.23)

5attention should be paid for M̄ ′(ε)/M̄(ε) in the limit for small ε since both the argument and the

parameters depend on ε; we remind to the appendix C for a detailed discussion.
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As we have already seen for the case of D2-brane intersecting D8-brane, also for this

case, the solution has no support at the origin. The electromagnetic field is delocalized

completely in the bulk and is not allowed to penetrate the interior of the string.

This result seems to be independent of the codimensions and therefore we propose that it

is still present for greater codimensions. Unfortunately no analytical solutions is known for

codimensions n > 2.

Solution with F+− = 0. Following the same scheme as before, we may now want to

look for solution of the kind F+− = 0. The equations of motion with gauge choice Au = 0

are:

∂u u∂u A− + g2∂u A− + δ(u) g2A− = 0 , (3.24)

∂u u∂u A+ − g2∂u A+ + δ(u) g2A+ = 0 , (3.25)

∂u(∂+A− + ∂−A+) = 0 . (3.26)

The last equation with F+− = 0 imposes the vector field A± to be holomorphic in x±. The

solutions are

A± = ±
f±
g2

u±g2

, (3.27)

and the coefficient f+ for A+ has to be zero since this component is not normalizable.

We are now left with finding the coefficient f− by imposing the boundary conditions.

Following closely the technique used, before the equations of motion with regularized δ

function are

g2∂u A− + ∂u u∂u A− = 0 u > ε , (3.28)

g2∂u A− + ∂u u∂u A− +
1

ε
A− = 0 u < ε , (3.29)

with the following regular solutions:

A− = − f−
g2 u−g2

u > ε , (3.30)

A− = hΓ[1 + g2]Jg2

[

2g
√

u/ε
] (

ε
ug2

)g2/2
u < ε . (3.31)

The boundary conditions impose two constraints on f−

f− = −hΓ[1 + g2] g2−g2

εg2

Jg2(2g) , (3.32)

f− = −h g2−g2

εg2

J1+g2(2g) , (3.33)

which translate into the following relation:

J1+g2(2g) = Γ[1 + g2]Jg2(2g) . (3.34)

Since there is no value of g that satisfies this relation, as before we find no solution of this

kind.
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4. Generic dimension bulk

As we said already, no exact solutions are known for codimensions greater than two, but

we can still look for a solution, that satisfies F+− = 0. Taking Au = 0, the equations of

motions for generic n > 2 are

∂uun−1∂u A+ − g2∂u A+ + δ(u) g2A+ = 0 , (4.1)

∂uun−1∂u A− + g2∂u A− + δ(u) g2A− = 0 , (4.2)

∂u(∂+A− + ∂−A+) = 0 , (4.3)

with the following solutions

A± = ±
f±
g2

{

exp

[

±
g2

n − 2

1

un−2

]

− 1

}

, (4.4)

where f± are coefficient functions holomorphic in x± to be fixed by the boundary conditions

on the string. We have chosen the integration constant in such a way that the vector field

is null at infinity.

Since un−1|A−|
2 ∼ u3−n when u → ∞, only for n ≥ 5 the vector field is normalizable. The

coefficient for A+ is set to zero, for this component strongly diverges at u → 0.

For any value of n > 2, 1/A− has an essential singularity at u = 0 and therefore the

boundary condition just imposes A−(0) ∼ f−(x−) to be zero.

We conclude that for any codimension greater than two - or for any codimension at all

remembering the previous results - such a solution does not exist.

5. Discussion

In this paper we have shown that the anomaly inflow forces the bulk gauge field away from

the defects where chiral fermions are localized. From a low energy perspective, this turns

into the decoupling of the zero-mode from the two dimensional spectrum. We discussed how

this dynamics is equivalent to the Coleman’s theorem for two dimensional field theories.

We analytically solved the dynamics of the gauge field for two solvable brane models with

two dimensional intersection. The first was constructed from one D2-brane intersecting

D8-branes. Its low energy spectrum consists of (2+1)-dimension gauge field and chiral

fermions localized on a (1+1)-dimension defect. The non-zero anomaly is cancelled by

anomaly inflow from the bulk. We have seen that the anomaly cancellation mechanism

effectively induces a repulsive potential for the gauge field in the equivalent Schrödinger

problem. The effect is to force the field away from the intersection and thus removing its

zero-mode from the low energy spectrum.

We have also solved the analogous dynamics for a brane configuration consisting of one D3-

brane intersecting D7-branes. The dynamics is analogous to the one discussed previously.

The anomaly inflow induces a repulsive potential, that effectively expels the gauge field

away from the intersection. Because the gauge field has no support on the intersection, its

zero-mode is decoupled from the low energy two dimensional spectrum.
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From a low energy perspective, the zero-mode of the gauge field describes the Nambu-

Goldstone boson associated with a spontaneously broken symmetry. Its absence is expected

from Coleman’s theorem, and the described dynamics enforces the theorem in the dual

picture.

The generalization to higher dimensions has been found hard to solve for the non-

existence of an analytic solution for the generalized equation of motion for F+−, as in (2.15)

and (3.7),

−un−1∂u un−1 ∂u F+− + (g4 − µ2u2n−2)F+− = 0 , (5.1)

where n is the codimension of the intersection (n = 1 in section 2, and n = 2 in section 3.)

In section 4, we have discussed a particular class of solutions and found that they are not

present in the spectrum. It would be interesting to be able to solve at least numerically the

higher dimensional case and to show the dynamics for cases such as the one of [14] or [17].

Further investigation may be required in this direction.

It would be interesting to study in greater details what are the effects of the delocal-

ization on closed string modes. In [23] and [24], it was shown that in certain cases when a

D-brane is fully contained into another, the former delocalizes in the worldvolume of the

latter. Since those configurations are T -dual to the ones we studied, a similar effect may

be expected. The details, however, seem to be far less clear.6

Another generalization of our discussion would be to study the dynamics for non-

abelian groups, that to say for Nf branes intersecting with Nc branes. The noncommuta-

tivity of the gauge field adds technical difficulties for solving analytically the equations of

motion and finding the Kaluza-Klein spectrum.

The generalization of the discussion can be easily implemented. For instance, in section 3,

we can consider Nf coincident D3-branes intersecting with D7-branes, instead of only one

D3-brane. As mentioned previously, chiral fermions are localized on the 1+1 topological

defect, and the RR scalar C(0) and the SU(Nf ) non-abelian gauge field AM are propagat-

ing in the bulk. The interactions are between fermions and gauge field on the string, and

between RR scalar and gauge field in the bulk. The latter has the form

∫

dC(0) ∧ ω3 where ω3 ≡ Tr[A ∧ F +
2

3
A ∧ A ∧ A ] . (5.2)

ω3 is the Chern-Simon form for non-abelian groups and generalizes the abelian case ω3 ≡

A∧F . The presence of the Chern-Simon term is essential for the consistency of the model,

since otherwise the gauge current would be non-conserved because of chiral anomaly.

The intersection is magnetically charged under the scalar field C(0), which can be integrated

out and whose flux is set by the charge on the string. An effective three dimensional

interaction, analogous to the one discussed in section 3, is recovered. We suggest, because

of the analogy with the already studied cases, that the effective Chern-Simon term generates

a repulsive potential for the equivalent Schrödinger equation and forces the gauge field to

delocalize in the bulk: no zero-mode is present in the spectrum and this “disappearance”

explains the absence of the NG boson as required by Coleman’s theorem.

6I would like to thank Don Marolf for pointing me to those works.
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A. Bosonization of Dirac Schwinger model

In 1+1 dimensions, fermions are known to be equivalent to bosons; a map can be con-

structed that links a fermion field ψ to a boson field φ. A set of rules can be provided to

equate the fermion currents, both vector ψ̄γµψ and axial ψ̄γµγ5ψ, with their correspon-

dent bosonic parts. Given these rules the boson Lagrangian is built, and its dynamics is

equivalent to the one for the fermion Lagrangian.

In the present appendix we review the bosonization of the Dirac Schwinger model, namely

the model for Dirac fermions coupled to a U(1) gauge field in 1+1 dimensions; in the next

appendix we will discuss the same construction for chiral fermions.

The Lagrangian is

S =

∫

d2x

[

−
1

4
F 2

µν + ψ̄(i/∂ + /A)ψ

]

, (A.1)

where we set the charge to 1 for sake of clarity. The map between the fermion ψ and its

equivalent boson φ is given by ψ ∼ exp[iγ5φ]. Given this equivalence, the bosonization

rules are:

ψ̄i/∂ψ =
1

2
(∂µ φ)2, (A.2)

ψ̄γµψ = εµν∂νφ , (A.3)

ψ̄γµγ5ψ = ηµν∂νφ . (A.4)

The previous relations may be found by taking the two fermion fields in each operator at

slightly different points and expand the exponential over the difference ε in the position of

ψ̄ and ψ. Taking the leading order, and renormalizing the divergence for ε → 0, leads to

the previous set of rules.

We can now substitute (A.2), (A.3) and (A.4) into the fermion action

S =

∫

d2x

[

−
1

4
F 2

µν +
1

2
(∂µ φ)2 + εµνAµ∂νφ

]

. (A.5)

The equivalent bosonized model is of a massless scalar field φ coupled to the gauge field

Aµ. The coupling is the reminiscence of the chiral anomaly in the fermion action. Given

the exponential representation of the field ψ in terms of φ, it is straightforward to see that

a chiral rotation of ψ corresponds to a shift of φ; by acting with this transformation on the

action we find δS = εµν∂µAν , which is the chiral anomaly in two dimensions.
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B. Bosonization of Chiral Schwinger model

In the present appendix we discuss the previous technique for bosonizing a fermion field

in the case of the chiral Schwinger model. The spectrum comprises a U(1) gauge field Aµ

and a chiral fermion ψL ∼ (1 − γ5)ψ. For these fields, the action is:

S =

∫

d2x

[

−
1

4
F 2

µν + ψ̄L(i/∂ + /A)ψL

]

. (B.1)

The bosonization rules resemble the ones given before for the non-chiral case,

ψLi/∂ψL =
1

2
(∂µ φ)2 , (B.2)

ψ̄LγµψL = (ηµν − εµν)∂νφ +
1

2
aAµ , (B.3)

the main difference is for the fermion current (B.3). The first term can be understood by

considering that the current is proportional to the sum of the vector and the axial current,

and so using the previous rules (A.3), (A.4) we are lead to it. The term proportional to the

gauge field has no direct explanation at this point, but we may point out that it can always

be added. In the previous case, the addition of aAµ is constrained by the requirement of

gauge invariance and therefore a is set to zero. The chiral action is not invariant under

gauge transformation δAµ = ∂µΛ because of the anomaly, therefore the parameter can not

be fixed at the moment; we will see that the requirement of a “minimal” anomaly will fix

a.

We may want to write the bosonization rules for the vector and the axial currents as

ψ̄γµψ = εµν∂νφ + εµνAν , (B.4)

ψ̄γµγ5ψ = ηµν∂νφ − εµνAν + aηµνAν . (B.5)

The relations (B.2) and (B.3) are found by summing up the rules (B.4) and (B.5).

The presence of the added term εµνAν is to ensure the vector current to be invariant under

gauge transformation, δAµ = ∂µΛ and δφ = −Λ. The field φ transforms under gauge

transformation, because the fermion field ψ is charged; since ψL = exp[iφ], δψL = exp[−iΛ]

imposes the field φ to shift under gauge transformation. Therefore variation of the vector

current is δjµ = 0, instead the axial current transforms as δj5
µ = (a − 1)ηµν∂νΛ − εµν∂

νΛ.

The result is understood since the axial current is not conserved because of quantum

corrections, which appear at classical level in the bosonized model.

Substituting (B.2) and (B.3) into the action, we obtain

S =

∫

d2x

[

−
1

4
F 2

µν +
1

2
(∂µ φ)2 + Aν(η

µν − εµν)∂µφ +
1

2
aA2

µ

]

, (B.6)

namely the action for a massless scalar field φ coupled to a gauge field Aµ. In the bosonized

theory the gauge field is not massless anymore, but it acquires a mass proportional to the

parameter a, which we shall fix.

Because of the anomaly, the action is not invariant under gauge transformation

δS = −

∫

d2x [(a − 1)∂µAµ + εµν∂µAν ] Λ , (B.7)
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in the brackets we find the anomaly A = (a− 1)∂µAµ + εµν∂µAν . We can see now that the

requirement of a “minimal” anomaly, namely the anomaly to be A = εµν∂µAν , fixes the

choice of the parameter a to be 1.

C. Properties of confluent hypergeometric functions

In this appendix we justify the asymptotic expansion for small ε of the ratio between M̄(ε)

and M̄ ′(ε) used in section 3 while studying the boundary conditions for F+−. The functions

M̄ and M̄ ′ were defined as

M̄(ε) = M(
i

2ε
+

1 + 2g2

2
, 1 + 2g2, 2iε) , (C.1)

M̄ ′(ε) = M ′(
i

2ε
+

1 + 2g2

2
, 1 + 2g2, 2iε) , (C.2)

where M(a, b, z) is the confluent hypergeometric function of the first kind. The above

functions dependend on ε both in the argument and in the parameters, and one could

question the effective convergence of M̄(ε)/M̄ ′(ε).

This particular hypergeometric function admits a series expansion of the form:

M̄(ε) =
∞

∑

k=0

(

i
2ε + 1+2g2

2

)

k

(1 + 2g2)k

(2iε)k

k!
, (C.3)

and

M̄ ′(ε) =

[

−
1

(1 + 2g2)ε
+ i

] ∞
∑

k=0

(

i
2ε + 3+2g2

2

)

k

(2 + 2g2)k

(2iε)k

k!
. (C.4)

The symbol (x)k is the Pochhammer symbol defined as (x)k ≡ Γ[x + k]/Γ[x] and is equal

to one for any non-negative integer argument. Because of this last property, we can easily

take the first order approximation in ε for the ratio M̄ ′(ε)/M̄ (ε) and find

M̄ ′(ε)

M̄(ε)
∼ −

1

(1 + 2g2)ε
+ i . (C.5)
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